Microspectroscopy on perovskite-based superlenses

نویسندگان

  • Susanne C. Kehr
  • Pu Yu
  • Yongmin M. Liu
  • Markus Parzefall
  • Asif I. Khan
  • Rainer Jacob
  • Marc Tobias Wenzel
  • Hans-Georg von Ribbeck
  • Manfred Helm
  • Xiang Zhang
  • Lukas M. Eng
  • Ramamoorthy Ramesh
چکیده

Superlenses create sub-diffraction-limit images by reconstructing the evanescent fields arising from an object. We study the lateral, vertical, and spectral field distribution of three different perovskite-based superlenses by means of scattering-type near-field microscopy. Subdiffraction-limit resolution is observed for all samples with an image contrast depending on losses such as scattering and absorption. For the three lenses superlensing is observed at slightly different frequencies resulting in an overall broad frequency range of 3.6 THz around 20 THz. © 2011 Optical Society of America OCIS codes: (180.4243) Near-field microscopy; (160.3918) Metamaterials; (160.3220) Ionic crystals; (100.6640) Superresolution. References and links 1. V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ ,” Sov. Phys. Usp. 10, 509–514 (1968). 2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). 3. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007). 4. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008). 5. U. Leonhardt and T. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247–1–18 (2006). 6. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). 7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). 8. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). 9. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009). 10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). #149016 $15.00 USD Received 1 Jul 2011; revised 19 Aug 2011; accepted 19 Aug 2011; published 30 Aug 2011 (C) 2011 OSA 1 September 2011 / Vol. 1, No. 5 / OPTICAL MATERIALS EXPRESS 1051 11. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 22, 534–537 (2005). 12. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006). 13. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature mater. 7, 435–441 (2008). 14. M. C. K. Wiltshire, J. Pendy, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001). 15. T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004). 16. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). 17. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, “Ferroelectric thin films: Review of materials properties, and applications,” J. Appl. Phys. 100, 051606 (2006). 18. S. Jin, T. Tiefel, M. McCormack, R. Fastnacht, R. Ramesh, and L. Chen, “Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films,” Science 264, 413–415 (1994). 19. M. K. Wu, J. Ashburn, C. Torng, P. Hor, R. Meng, L. Gao, Z. Huang, Y. Wang, and C. Chu, “Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure,” Phys. Rev. Lett. 58, 908–910 (1987). 20. J. Scott, Ferroelectric Memories (Springer Series in Advanced Microelectronics, Vol. 3, Heidelberg, New York, 2000). 21. R. Waser, Nanoelectronics and Information Technology (Wiley-CH, Weinheim, 2003). 22. S. C. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249, DOI:10.1038/ncomms1249 (2011). 23. R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). 24. W. Spitzer, R. C. Miller, D. Kleinman, and L. Howarth, “Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2,” Phys. Rev. 126, 1710–1721 (1962). 25. S. Kamba, D. Nuzhnyy, M. Savinov, J. S̆ebek, J. Petzelt, J. Prokles̆ka, R. Haumont, and J. Kreisel, “Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics,” Phys. Rev. B 75, 024403 (2007). 26. T. D. Kang, G. S. Lee, H. S. Lee, H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, and P. G. Snyder, “Infrared ellipsometric study on PZT thin films,” J. Korean Phys. Soc. 49, 1604–1610 (2006). 27. F. Zenhausern, M. O’Boyle, and H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994). 28. F. Zenhausern, Y. Martin, and H. Wickramasinghe, “Scanning interferometric apertureless microscopy: Optical imaging at 10 Angstrom resolution,” Science 269, 1083–1085 (1995). 29. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: Optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991). 30. S. C. Schneider, J. Seidel, S. Grafström, L. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90, 143101 (2007). 31. S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100, 256403 (2008). 32. G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J. Appl. Phys. 5, 269–275 (1999). 33. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000). 34. R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029–3032 (2000). 35. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002). 36. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical Resonance Tuning and Phase Effects in Optical Near-Field Interaction,” Nano Lett. 4, 1669–1672 (2004). 37. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1608 (2005). 38. I. Fedorov, J. Petzelt, V. Zelezny, G. A. Komandin, A. A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Farinfrared dielectric response of PbTiO3 and PbZr1−xTixO3 thin ferroelectric films,” J. Phys.: Condens. Matter 7, 4313–4323 (1995). #149016 $15.00 USD Received 1 Jul 2011; revised 19 Aug 2011; accepted 19 Aug 2011; published 30 Aug 2011 (C) 2011 OSA 1 September 2011 / Vol. 1, No. 5 / OPTICAL MATERIALS EXPRESS 1052

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling

A planar slab of negative-index material works as a superlens with sub-diffraction-limited resolution, as propagating waves are focused and, moreover, evanescent waves are reconstructed in the image plane. Here we demonstrate a superlens for electric evanescent fields with low losses using perovskites in the mid-infrared regime. The combination of near-field microscopy with a tunable free-elect...

متن کامل

Experimental and Kinetic Study of CO Oxidation Over LaFe1-xCuxO3 (x=0, 0.2, 0.4, 0.6) Perovskite-Type Oxides

In this paper, catalytic oxidation of CO over the LaFe1-xCuxO3 (x= 0, 0.2, 0.4, 0.6) perovskite-type oxides was investigated. The catalysts were synthesized by sol-gel method and characterized by XRD, BET, FT-IR, H2-TPR and SEM methods. The catalytic activity of catalysts was tested in catalytic oxidation of CO. XRD patterns confirmed the synthesized perovskites to be single-phase perovskite-ty...

متن کامل

Superlenses to overcome the diffraction limit.

The imaging resolution of conventional lenses is limited by diffraction. Artificially engineered metamaterials now offer the possibility of building a superlens that overcomes this limit. We review the physics of such superlenses and the theoretical and experimental progress in this rapidly developing field. Superlenses have great potential in applications such as biomedical imaging, optical li...

متن کامل

FTIR-Microspectroscopy Detection of Metronidazole Teratogenic Effects on Mice Fetus

Metronidazole is used to treat trichomoniasis, bacterial vaginosis, and other diseases. There are controversy aspects about its teratogenicity. A teratogenic agent can alter morphology or subsequent function of the fetus. The aim of this study was to examine an alternative method for the recognition of the mechanism or the bimolecular potential changes in mice fetus caused by Metronidazole usin...

متن کامل

Image quality deterioration due to phase fluctuation in layered superlens

Optical transfer function (OTF) and image spectrums of the layered metal (M)–dielectric (D) superlenses (MD)n (where n is the number of cycles) are analyzed via transfer matrix method and effective-medium model. It is shown that the magnitude of OTF (MTF) with a high cutoff wave vector does not guarantee high resolution; the fluctuation of phase of OTF (PTF) is also a prime factor causing super...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011